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Abstract

A choice-based version of the sure-thing principle is most often violated without

preference maximization. Implications for (individual and social) choice theory, game

theory and mechanism design include: dynamic consistency with respect to the resolu-

tion of uncertainty implies rationality over constant acts, totally-mixed beliefs cannot

be overlooked when checking dominance in games, dominance in extensive-form games

is not equivalent to dominance when choosing behind the veil of ignorance in their

associated strategic forms, generalizations of serial dictatorship, and only those rules,

are dominant-strategy implementable over the largest domain of all choice functions,

and it becomes preferable to use dynamic mechanisms.

1 Introduction

Savage (1972, page 39) motivates the sure-thing principle with the following story:

A businessman contemplates buying a certain piece of property. He considers

the outcome of the next presidential election relevant to the attractiveness of the

purchase. So, to clarify the matter for himself, he asks whether he would buy

if he knew that the Republican candidate were going to win, and decides that

he would do so. Similarly, he considers whether he would buy if he knew that

the Democratic candidate were going to win, and again finds that he would do

so. Seeing that he would buy in either event, he decides that he should buy,

*The paper is the first complete version of a preliminary draft entitled ‘Incorporating Risk in Choice
Theory: Some Observations’ that circulated in 2020. I thank Shengwu Li, Pietro Ortoleva, Marek Pycia and
Kareen Rozen, as well as seminar participants at the Paris School of Economics and Princeton University,
for useful comments.
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even though he does not know which event obtains, or will obtain, as we would

ordinarily say.

The story describes what choices the businessman would make in different states of the world,

and concludes that he should choose to buy when not knowing which event will obtain if

he would do so in either one of them. Of course, Savage could have equivalently described

the story in terms of preferences since choices are derived through preference maximization

in his framework. But the story does sound reasonable enough expressed in choices as it is,

independently of how these choices arise and what other options the businessman has.

The present paper formulates a choice-based property in this spirit, see STP below. Under

rationality, the property is mild and hence most often taken as granted. It is satisfied in

particular whenever maximizing a preference consistent with first-order stochastic dominance

(including for instance expected-utility or rank-dependent utility, etc.).1 Things are different

when considering irrational choice functions, as the two following examples illustrate.

Consider first a shortlisting method in the spirit of Manzini and Mariotti (2007) to capture

individual choices that need not be rational.

Example 1. When selecting a wine bottle, an individual first looks at its vintage and region

of production. He starts by eliminating any bottle that is Pareto inferior to another available

option along both dimensions. He then examines closely the surviving options, weighing

carefully their pros and cons, to finally reach his final choice. Say this last step is consistent

with maximizing a standard preference relation. The table below provides the individual’s

utility (u), and ratings along the two selection criteria (sc1 and sc2), over three bottles (x,

y, and z).

sc1 sc2 u

x 1 4 2

y 2 2 3

z 3 3 1

For instance, the individual would end up selecting y from {x, y}, as both options remain on

the shortlist and y provides a larger utility, and z from {y, z} because y is Pareto inferior to

z for the preliminary selection criteria.

While one could contemplate other avenues,2 suppose the individual applies a similar

procedure, this time to expected values, when risk is involved. For instance, he would end up

1Prospect theory was criticized for not agreeing with first-order stochastic dominance, and adapted in a
‘second wave’ of models to fix what was viewed as a flaw. More recent versions with endogenous reference
points, on the other hand, can violate the property.

2We develop the example around one possible, arguably natural extension of the shortlisting procedure
to lotteries. This is solely for illustration purposes, as the main result below applies whatever the extension.
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selecting ℓ = 0.5x⊕ 0.5y over ℓ′ = 0.5y⊕ 0.5z, because both lotteries remain on the shortlist3

and u(ℓ) = 2.5 > 2 = u(ℓ′).

Suppose now a card will be drawn from a deck of Black and Red cards. The individual

must choose between two bets (or ‘acts’):

Black Red

Bet 1 x y

Bet 2 y z

The individual picks Bet 2 both if he knows the state is Black (as it gives y while choosing

between bottles x and y), or if he knows the state is Red (as it gives z while choosing between

bottles y and z). Since he picks Bet 2 whatever the card color, one may expect him, in the

spirit of the sure-thing principle, to pick that same bet whatever the proportion p of black

cards in the deck. This is wrong, as it follows from the previous paragraph that he picks Bet

1 when p = 1/2 (and, more generally, whenever p is strictly between 1/3 and 2/3).

Consider now group decisions. This time, all participants are rational, but their aggregate

choices fail to be rationalizable.

Example 2. A committee applies the Borda rule to reach decisions. Its members’ utilities

for three possible outcomes (x, y or z) are:

u1 u2 u3

x 2 1 3

y 4 2 0

z 0 4 2

Say there are ni committee members with utility function ui. With ni + nj > nk for all

distinct i, j, k ∈ {1, 2, 3}, we get the oft-discussed Condorcet cycle, with y selected from

{x, y}, z selected from {y, z}, and x selected from {x, z}.
Assuming committee members are expected utility maximizers,4 the Borda rule also ap-

plies when selecting lotteries. For instance, the committee selects ℓ = 0.5x ⊕ 0.5y over

ℓ′ = 0.5y ⊕ 0.5z, because ui(ℓ) > ui(ℓ
′) for i = 1, 3.

Suppose now the committee must select one of two courses of actions (a or b), whose

outcome is impacted by a state (ω1 or ω2):

ω1 ω2

a x y

b y z

3sc1(ℓ) = 1.5 < 2.5 = sc1(ℓ
′) and sc2(ℓ) = 3 > 2.5 = sc2(ℓ

′).
4A similar comment as in footnote 2 applies here as well.
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With y (resp., z) being the committee’s selection from {x, y} (resp., {y, z}), it selects b

both if its members know the state is ω1, and if they know the state is ω2. Yet, against the

spirit of the sure-thing principle, the committee selects a when its members think ω1 and ω2

are equally likely to obtain (and, more generally, whenever p is strictly between 2/5 and 2/3),

as follows from the previous paragraph.

These are but two examples. Are these violations of the sure-thing principle a pecu-

liarity of the shortlisting method/Borda rule and their specific extensions to the domain of

lotteries? In other words, how common are such violations of the sure-thing principle be-

yond preference maximization? They are very prevalent, as it turns out (see Proposition 1):

any choice function satisfying STP must be rational over deterministic outcomes/constant

acts. Think now of choice theory’s revival over the past fifteen years or so (see de Clippel

and Rozen (forthcoming) for a survey), including for instance Manzini and Mariotti (2007)

mentioned for Example 1. Most papers in this literature study choice processes individuals

may use to make decisions, and choice functions they trigger, over a finite set O of options,

so as to accommodate behavioral biases that are inconsistent with rationality. Our result

implies that any extension of these choice functions capturing irrational behavioral biases

to menus of lotteries (subsets of ∆(O)) must violate STP. Alternatively, we know from Ar-

row’s impossibility theorem that irrationality oftentimes prevails in group choices when O

contains at least three elements, even when group members are rational. Hence some STP

violations must occur when these groups face risk. The result also means that any choice

function violating rationality over constant acts must display some dynamic inconsistency

with respect to the resolution of uncertainty.

Beyond (individual and social) choice theory, these observations have implications in

game theory and mechanism design. Under preference maximization, a player’s strategy

is dominant if it is a best response whatever its belief about its opponents’ actions. But

optimality is typically checked only against opponents’ pure strategies. This is fine when

restricting attention to expected utility (or any preference ordering satisfying first-order

stochastic dominance). The first lesson is that one should not overlook probabilistic beliefs

when checking dominance in the absence of preference maximization. This makes dominance

harder to achieve than one might think. The second lesson, this time for dynamic games, is

that checking dominance at the moment a player makes her choice, as it should be, can be

more permissive than checking dominance of complete strategies before the game starts, as

one is used to do (and correctly so in standard models). In particular, in sharp contrast to

the expected-utility benchmark, the equivalence of extensive-form games and their associated

strategic forms for identifying dominant strategies may fail.

To summarize, STP violations prevail when deterministic choice functions fail to be
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rational. As a result, dominance becomes even more demanding than one is used to, though

less severly so in dynamic games. One is then left wondering: Are we facing essentially an

impossibility result, establishing we should abandon the notion of dominant strategy beyond

preference maximization? Or, is there hope the concept brings valuable insights in relevant

applications? As a first step in addressing those questions, Section 4 covers a mechanism-

design application, a field where dominant strategies play an important role. Specifically,

we tackle problems of unit-demand assignment problems, one of the building blocks of the

market-design literature. A participant’s type must now capture her choice function over

lotteries of outcomes (instead of merely a preference over deterministic outcomes in the

standard, rational benchmark): though mechanisms are deterministic, STP violations mean

one cannot overlook totally-mixed beliefs about others’ strategies. These choice functions

can be fully rational, with expected or non-expected utility, or capture more complex choice

patterns reflecting behavioral biases and STP violations. Needless to say, implementation

over this richest domain is most challenging, but also extremely desirable given its robustness

to all forms of behaviors.

Proposition 2 establishes that the class of all non-bossy social choice functions that are

implementable in dominant strategies can be represented as generalized serial dictatorships.

Though perhaps intuitive enough ex-post, it wasn’t obvious at the outset that any rule

would be robustly implementable this way, and proving necessity (that no other rule fits the

bill) is by no means trivial. Also, identifying these rules is possible only after recognizing

that dynamic games are oftentimes preferable in this context (as highlighted in Section 3),

because observing past choices reduces the uncertainty players face. Indeed, implementing

generalized serial-dictatorship rules often requires a dynamic mechanism, in sharp contrast

to dominant-strategy implementation over the rational domain (where restricting attention

to static mechanisms is without loss).

To conclude, one should exercise caution, and avoid misleading intuition gleaned from

experience with more standard frameworks when incorporating risky prospects in models of

bounded rationality or group choices. But important lessons can be learned when doing it

properly.

Related Literature

A recent literature highlights people’s difficulty in performing contingent reasoning. While

agents are assumed to be payoff maximizing, such mistakes are attributed to the complex-

ity of projecting oneself in multiple mutually-exclusive circumstances. Esponda and Vespa

(2021) is perhaps most related within that literature given its focus on Savage’s sure-thing
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principle.5 They revisit five classic anomalies in decision and game theory under two frames.

While the first one present these problems in their standard format, the second frame is

designed to make contingent thinking more salient. Their data provides evidence that these

anomalies are partly driven by a failure of the sure-thing principle. Our theoretical contri-

bution also speaks to violations of a sure-thing principle, but for an orthogonal reason: even

if one maintains the classic assumption that people can perform contingent reasoning, vio-

lations of STP (a choice-based analogue of the sure-thing principle) arise when choices over

deterministic outcomes cannot be explained through preference maximization. The sections

on mechanism design and behavioral implementation in dominant strategies become only

more relevant if further STP violations arise because some people have trouble performing

contingent reasoning.

Li (2017) introduces obvious dominance as a more restrictive alternative to standard

dominance in games. A player’s strategy s is obviously dominant if, for all deviations, the

best payoff she obtains under all possible ensuing outcomes is smaller than the worst pay-

off she obtains under all outcomes that may arise when sticking to s.6 Pycia and Troyan

(forthcoming) introduce a stronger version of obvious dominance in their study of simplicity

in games and mechanisms, whereby a player at an information set treats her own future

moves as moves from another party. Either way, while players are payoff maximizing, dom-

inance is tested with inconsistent beliefs (most pessimistic for s and most optimistic under

any deviation). By contrast, participants (individuals or groups) in the present paper need

not be payoff maximizers, and dominance is simply the choice-based extension of the stan-

dard definition (where beliefs remain unchanged when performing comparisons). Though

for different reasons, a common consequence is that finding a dominant strategy in the

mechanism-design problem becomes harder under both approaches, which narrows the set

of implementable rules. Also, both approaches prove the value of dynamic games in contrast

to the standard framework where it is sufficient to study static mechanisms when it comes

to dominant-strategy implementation.

Following Pápai (2000), Pycia and Ünver (2017) fully characterize the set of social choice

functions that are efficient, non-bossy and implementable in dominant strategies for unit-

demand assignment problems.7 A subset of them, Pápai’s hierarchical exchange rules sat-

isfying a dual-ownership property, are furthermore implementable in obviously dominant

5The reader who is interested in failures of contingent reasoning beyond violations of the sure-thing
principle, is referred to Esponda and Vespa (2021)’s discussion of the related literature.

6These comparisons are made at the time the deviation starts, which is important to determine what set
of outcomes must be contemplated.

7With unit demand, group strategyproofness is equivalent to dominant-strategy implementation plus
non-bossiness on the rational domain. We won’t focus on group strategyproofness as it is not immediately
clear how to define it beyond the rational domain.
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strategies, see Troyan (2019) and Mandal and Roy (2022). Using strong obvious dominance,

Pycia and Troyan (forthcoming, Section 4.3) further narrows down the set of implementable

rules, singling out essentially the same mechanisms as we do.8 These works all assume

participants are payoff maximizers, and determine dominance by comparing deterministic

outcomes arising under the mechanism (using consistent or inconsistent deterministic beliefs

about what happens in the game on path and after a deviation). By contrast, we permit a

much larger class of behaviors, indeed allowing for any choice function over lotteries, while

observing that dominance should hold given all (consistent) stochastic beliefs about others’

choices. Thus, being dominant must hold both for the deterministic outcomes arising when

the player believes others play pure strategies, and for lotteries arising when the player has

totally-mixed beliefs. While the former implies the latter under the sure-thing principle, our

arguments highlight that being dominant becomes very demanding for choice functions that

violate STP (which, as shown in the first part of the paper, must occur when allowing for

non-rational choice functions over constant acts). Yet implementation in dominant strat-

egy remains doable. Characterization results (with or without non-bossiness, and with or

without Pareto efficiency on the rational domain) gravitate around generalized serial dicta-

torship rules. Known to be implementable in (strongly) obviously-dominant strategies, these

rules also have the remarkable feature of guaranteeing the existence of dominant strategies

whatever the participants’ choice functions. This is important not only because of the many

behavioral biases that have been documented in the literature on individual choices, but

also because the aggregation of multiple conflicting preferences may fail to be rational when

participants are groups (e.g., assigning public housing to families).

As detailed in Dreyfuss, Heffetz and Rabin (2022), recent evidence, both empirical and

experimental, shows a substantial fraction of dominated choices in the widely-implemented

deferred acceptance algorithm. Interestingly, they prove this behavior may be partly in-

tentional under expectations-based loss aversion (as in Köszegi and Rabin (2009)). Their

argument centers around a key property of these non-expected utility preferences, namely

that they violate first-order stochastic dominance (and hence STP). They also show that

reasonable specifications of their behavioral model better fits Li (2017)’s experimental data

on random serial dictatorship9 than standard expected utility. Dreyfuss, Glicksohn, Hef-

8Comparing these last three papers, it is interesting how the class of implementable social choice functions
is further trimmed when imposing the strong form of obvious dominance. In other words, it does matter
under this approach whether or not a player knows, and sticks to what her own strategy prescribes at future
information sets. By contrast, a player is never uncertain about her own future moves when comparing
strategies under the consistent-beliefs approach we pursue. What needs to be eliminated is the uncertainty
arising from others’ future choices when accommodating all choice functions.

9Players submit a ranking, independently of each others and knowing only their own priority score. They
face thus much uncertainty when choosing a report, which can break down the dominance of strategies in
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fetz, and Romn (2022) experimentally test four DA variants – {static, dynamic} × {student
proposing, student receiving} – and show that, while predicted behavior is identical in all

four formats under standard preferences, incorporating expectations-based reference depen-

dence predicts important differences. New experimental data they collect confirms these

differences. In particular, the dynamic student-receiving version leads to the highest com-

pliance with straightforward behavior. Here too we see that restricting attention to static

mechanisms is with loss of generality.

The paper also contributes to the growing effort of incorporating lessons from behavioral

economics into the implementation and mechanism-design literatures. The closest contribu-

tion is de Clippel (2014) who investigates behavioral Nash implementation under complete

information while allowing participants’ choice to diverge from preference maximization.

The case of dominant strategies under private information is equally important. Sections 2

and 3 provide the groundwork for understanding what dominance means and entails in this

context, while Section 4 then pursues the implementation exercise itself for a relevant class

of problems.

2 Starting Point

Let O be a (finite) set of relevant outcomes. A lottery is a probability distribution over

O. A choice function c associates to each (finite) set L of lotteries a subset c(L). Since

outcomes are degenerate lotteries, a choice function also defines choices over subsets of O.

The restriction of c on subsets of O is assumed to be single-valued. This restriction is rational

if there exists a preference ordering ≻ on O such that c(S) = argmax≻ S, for each S ⊆ O.

Let Ω be a (finite) set of states of the world. An act is a map that associates an outcome

to each state of the world. The states’ relative likelihoods are captured by a probability

distribution p ∈ ∆(Ω). Assuming state-independence, as we do throughout the paper,

means that only lotteries associated to acts matter to the decision-maker. Given any finite

set A of acts, let Lp(A) be the set of lotteries ℓp(a) – “outcome x occurs with probability∑
ω|a(ω)=x p(ω)” – obtained by varying a ∈ A. If p puts probability one on ω, then Lp(A) is

denoted A(ω), that is, A(ω) = {a(ω)|a ∈ A}.
In the spirit of the sure-thing principle, we investigate the following property on choice

functions over risky prospects:

Property STP Let A be a set of acts, and a ∈ A. If c(A(ω)) = {a(ω)} for each ω ∈ Ω,

then c(Lp(A)) = {ℓp(a)} for all p ∈ ∆(Ω).

the presence of STP violations.
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If the decision-maker knows that the state is ω, then picking an act amounts to choosing

an outcome within A(ω). Now suppose that the act a has the unique property of delivering

her chosen outcome in each state ω. This is a very stringent property that often does not

apply as an act may provide the chosen outcome in some state but rarely in all states. Given

state-independence, picking an act from A given p amounts to picking a lottery from Lp(A).

STP requires this lottery to be ℓp(a), indeed the one associated to act a. Inspired by the

sure-thing principle, this seems reasonable at first because a delivers the outcome she wants

to pick whatever the state realization. Yet, as claimed in the Introduction, this property is

violated as soon as the restriction of c to deterministic outcomes is not rational.

Proposition 1. If c satisfies STP, then it is rational over deterministic outcomes.

The two examples from the introduction leverages the specifics of the Borda rule and the

shortlisting method. Proposition 1 reveals that these specifics do not matter for establishing

the existence of STP violations: the mere presence of IIA violations over deterministic

outcomes suffices.10

Remark 1. Are there irrational choice functions satisfying STP while consistent with pref-

erence maximization over deterministic outcomes? For concreteness, suppose that outcomes

are monetary payoffs and that choices are obtained by payoff maximization in the absence of

risk. Say the choice function c is consistent with first-order stochastic dominance if, for each

set of lotteries L over monetary amounts, there is no lottery ℓ ∈ L that first-order stochasti-

cally strictly dominates c(L). As is easily checked, any such choice function satisfies STP.11

In particular, one can construct many irrational choice functions over monetary lotteries

satisfying STP: for any choice function c, the modified choice function ĉ that selects, from

any menu of monetary lotteries the choice from the subset of lotteries that are not first-order

strictly dominated, satisfies STP.

10IIA violations occur in both examples given that x is selected from {x, y, z}, but y is selected from {x, y}.
11Other choice functions may violate STP. For an example, consider a “cautious investor comparing alter-

native portfolios [who] first eliminates those that are too risky relative to others available, and then ranks the
surviving ones on the basis of expected returns” (Manzini and Mariotti (2007, page 1825)). Concretely, sup-
pose the investor first computes each lottery’s coefficient of variation, and eliminates those with a coefficient
strictly above average (within the set of available lotteries). While rational over deterministic outcomes, the
investor violates STP by selecting an asset paying $1, 500 whatever the state, over one paying $1, 501 if the
state belongs to Ω′ ⊂ Ω and $1, 502 otherwise, whenever she places strictly positive probability on both Ω′

and Ω \Ω′. Expectations-based loss aversion (see e.g. Köszegi and Rabin (2009)) provides another example.
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3 Dominant Strategies in Game Theory

3.1 Lesson for strategic-form games

A rational strategic-form game specifies for each player i ∈ N a finite set Si of strategies, a

preference ordering ≻i over outcomes in O,12 and an outcome function f : S → O where S =

×i∈NSi is the set of strategy profiles. In many courses and textbooks, the prisoners’ dilemma

is offered as a first illustration, immediately followed by the notion of dominant strategy (see

e.g. the exposition in Mas-Colell, Whinston and Green (1995, Section 8.B)). Formally,

strategy s∗i is dominant for player i if f(s∗i , s−i) ≻i f(s) for all s ∈ S such that f(s∗i , s−i) ̸=
f(s). Later on, one usually points out that a player’s belief about their opponents’ strategies

need not be deterministic (either because they believe others randomize, or because they are

unsure about which strategy others select). One must now define each player i’s preference

over lotteries. For this, one typically specifies i’s Bernoulli utility for each outcome (that

agrees with ≻i, while also capturing risk attitudes), and assumes strategies are selected

by maximizing expected utilities. Contrary to the notions of dominated strategy or Nash

equilibria, the definition of a dominant strategy is usually not revisited at that point. This

is sensible since expected utility guarantees that a dominant strategy remains superior to all

alternative strategies, whatever the player’s belief about his opponents’ strategies.

The first lesson in this section warns that, by contrast, considering stochastic beliefs

ceases to be optional beyond the rational domain, because of systematic violations of STP. To

formalize this simple, but important observation, consider now players using choice functions

that need not be compatible with preference maximization (either because of behavioral

biases or because players are groups instead of individuals). The notion of a game easily

extends: a behavioral strategic-form game is obtained simply by substituting in the definition

each player i’s preference over lotteries (expected utility for a prespecified Bernoulli utility

consistent with ≻i) by her choice function ci.

Definition 1. Strategy s∗i is dominant for i against deterministic strategies if

ci({f(s)|si ∈ Si}) = {f(s∗i , s−i)},

for all s−i ∈ S−i.

If i expects others to pick s−i, then the opportunity set of outcomes she faces when

picking her own strategy is {f(s)|si ∈ Si}. Suppose she’d pick o from that set, which

12We leave aside the possibility of indifference over deterministic outcomes in line with our focus on
single-valued choice functions on that domain.
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happens to be precisely the outcome she gets when picking s∗i . For s∗i to be dominant

against pure strategies, this property must hold whatever s−i. This is the natural extension

of the property of dominance one checks in rational games.

But dominance requires the strategy to be selected whatever the player’s belief about

her opponents’ strategies. To define this, consider now ci defined over ∆(O). Given a

belief p ∈ ∆(S−i), let ℓp(si) be the lottery that selects f(s) with probability p(s−i) and

let Lp
i = {ℓp(si)|si ∈ Si} be the opportunity set of lotteries that i faces when picking her

strategy.

Definition 2. Strategy s∗i is dominant for i if ci(L
p
i ) = {ℓp(s∗i )} for all p ∈ ∆(S−i).

13

Lesson 1. While Definitions 1 and 2 are equivalent in standard14 rational games, this equiv-

alence fails to extend to the class of behavioral strategic-form games.

This follows at once from our initial observation in Section 2 after realizing that other

players’ strategies can play the roles of states. The equivalence in standard rational games

holds because optimality against each pure strategy guarantees optimality against opponents’

correlated strategies when STP holds. By contrast, consider the committee from Example 2

picking a row in the following game:

L R

a x y

b y z

Earlier arguments now mean that b is dominant for the committee against its opponent’s

pure strategies, while failing to be dominant, as the committee would pick a if its members

view ‘L’ and ‘R’ are equally likely (or occuring with a probability strictly between 2/5 and

2/3). Beyond this example, it is straightforward to replicate the proof of Proposition 1 to

show that, for each choice function c failing rationality over O, there exists a behavioral

strategic-form game with outcomes in O for which a player who follows c has a strategy

failing to be dominant while being dominant against pure strategies.

13Under this definition, a player’s belief allows for correlation across opponents’ strategies. This is more
demanding than requiring dominance for all independent beliefs, that is, for all p ∈ ×j ̸=i∆(Sj). As argued
by Brandenburger and Dekel (1987), both views are possible. In the setting of a controlled lab experiment,
without any coordination device and communication opportunities across players, independence seems rea-
sonable. Otherwise it seems one should entertain the larger class of beliefs. We follow the more demanding,
and robust approach.

14Meaning that i’s preference over lotteries is FOSD-consistent with ≻i (e.g., expected utility extension).
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3.2 Lesson for extensive-form games

Another lesson arising from Proposition 1 pertains to dominant strategies in the richer

framework of dynamic games.

An extensive-form game is a tree (that is, a rooted graph with no cycle) with a player

attached to each non-terminal node and an outcome in a set O attached to each terminal

node. Let n be a decision node, and let i be the associated player. The set of arcs getting

out of a node is the set of actions available to the player at that node. To model the possible

lack of observation about other players’ past moves, an information set for a player i in an

extensive-form game is a collection of decision nodes such that

� player i is attached to every node in the information set,

� the set of actions is identical at each node in the information set.

An extensive-form game is of perfect information if all the information sets are singletons.

We assume there is perfect recall, meaning that players remember their own past moves

each time they make a decision. Under the rational benchmark, players are endowed with

a preference ordering over O, which is extended to a preference over ∆(O) in a way that

is FOSD-consistent (e.g., expected utility). We also consider the behavioral generalization

where each player is endowed with a choice function defined over menus in ∆(O). A strategy

for a player in the extensive form is a complete plan of action, that is, the selection of an

action at each node she is attached to. The associated strategic form is obtained by having

each player pick a strategy independently of each others before the start of the game, with

the outcome function simply selecting for each strategy profile the outcome attached to the

terminal node when implementing those strategies in the extensive form.

The standard approach, developed for the rational benchmark, is to call a strategy dom-

inant in the extensive-form if it is dominant in its associated strategic form. In other words,

it does not matter whether dominance is assessed at the time a player actually makes her

choice, or before the game starts. Aligning with the meaning of an extensive form (whose

purpose is to capture the sequence of moves and, more importantly, what information players

have about past moves when they make their own decisions), only the former scenario makes

sense. But of course this distinction is moot under the rational benchmark: by the sure-

thing principle, it is equivalent to take the approach behind the veil of ignorance about past

actions, akin to implementing a strategy-method approach in experiments, because domi-

nance at each future information set implies dominance whatever the player’s belief about

the likelihood of reaching those sets. The second lesson following Proposition 1 is that such

equivalence does not extend to the class of behavioral extensive-form games because of STP

violations.
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To formalize this, consider one of player i’s information sets, I. The strategy profile s−i

for the other players is consistent with I if one can find a strategy si for i such that I is

reached when implementing si and s−i. Let SI
−i denote the set of other players’ strategy

profiles that are consistent with I. An information set I ′ succeeds an information set I if

there is a path from the root to a node in I ′ that passes through I. A strategy for i starting

at I, sIi , pins down an action at I and all her subsequent information sets. Let SI
i denote

the set of all such strategies. Conditional on having reached I, the outcome when she follows

sIi while others follow s−i ∈ SI
−i is denoted o(sIi , s−i).

15 Not knowing which strategy profile

others follow in that set, all beliefs should be considered. If her belief is µI
i ∈ ∆(SI

−i), then

playing sIi gives rise to the lottery ℓIi (s
I
i , µ

I
i ) where outcome o ∈ O occurs with probability∑

s−i∈SI
−i|o(sIi ,s−i)=o

µI
i (s−i).

Agent i’s opportunity set of lotteries when varying her own strategy at I, and given her

belief µI
i , is thus:

OI
i (µ

I
i ) = {ℓIi (sIi , µI

i )|sIi ∈ SI
i }.

Playing sIi is dominant for i at I if ci(OI
i (µ

I
i )) = {ℓIi (sIi , µI

i )}, for all µI
i ∈ ∆(SI

−i). That is,

whatever her belief about others’ strategies (consistent with I), sIi provides the lottery she

wishes to choose within the opportunity set OI
i (µ

I
i ) of lotteries she can obtain by picking a

strategy at I. Player i’s strategy si is dominant for i if, for each information set I at which

i plays, sIi (the restriction of si to I and subsequent information sets) is dominant for i at

I.

Lesson 2. The strategy in a rational extensive-form game is dominant if, and only if, it is

dominant in the associated strategic form. This equivalence fails to extend to the class of

behavioral extensive-form games.

The equivalence under rationality follows from STP, as already explained. To see how is-

sues arise when dropping preference maximization, consider the following perfect-information

game:

15A unique outcome is determined, because reaching I pins down i’s action choice at all her information
sets preceding I (independently of s−i). Suppose, on the contrary, that one can find an earlier information
set I ′ and two actions a and a′ on different paths going from the root to I. A cycle would arise in the graph
if both paths reach the same node in I, contradicting the definition of an extensive-form game as a tree.
But reaching two distinct nodes in I now contradicts perfect recall.
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Player 1

Player 2

x

L

y

R

L

Player 2

y

L

z

R

R

Its associated strategic form is:

LL LR RL RR

L x x y y

R y z y z

Suppose now Player 2 is the committee from Example 2 with, in addition, 3n2 < n1 + n3

(take for instance n1 = n3 = 2 and n2 = 1). Though it does not have a dominant strategy

in the associated normal form,16 RR is clearly dominant for the committee in the extensive

form because it picks y from {x, y} and z from {y, z}.

4 Illustration: A Case of Behavioral Implementation

in Dominant Strategies

To further illustrate the implications of our initial observation in Section 2, and apply in

particular the game-theoretic lessons from the previous section, we now revisit the classic

problem of dominant-strategy implementation in a behavioral framework, that is, with types

determining choice functions instead of preferences (or, equivalently, choice functions satis-

fying IIA). As we saw, we cannot rely on the sure-thing principle anymore. In particular, a

proper definition of strategyproofness must now include the possibility of stochastic beliefs,

and dynamic games may become valuable (as equivalence with dominance in the associated

normal form breaks down).

Implementation in dominant strategies is already demanding on the rational domain.

Further expanding the domain makes it only harder. In view of Gibbard (1973) and Sat-

16As discussed in Example 2, the committee selects y (resp., z) from {x, y} (resp., {y, z}), and hence can
only select RL or RR (resp., LR or RR) when all members believe 1 picks L (resp., R). With this, RR is
the only candidate for a dominant strategy, but LL gets a larger Borda count when 3n2 < n1 + n3 and 1 is
equally likely to pick L or R.
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terthwaite (1975), possibility results are typically attained by restricting the structure of

the problem and/or the class of possible preferences. Though the literature has successfully

explored other important domains (see Barberà (2011)), the present section is dedicated to

the study of discrete allocation problems with unit demand. Focusing on this framework is

both for convenience (an immediate17 extension of the discrete-choice model studied thus

far) and because of its importance (a main building block of the market-design literature).

These problems have been studied extensively on the rational domain, see e.g. the important

contributions of Pápai (2000) and Pycia and Ünver (2017).

A set N of agents have unit demand over a set X of indivisible items.18 Accommodating

the possibility that some agents might not consume any item, let X∗ = X ∪ {∅}. An

assignment α allocates up to one item per agent: α(i) ∈ X∗ with the feasibility constraint

that two distinct agents must be assigned distinct items (α(i) = α(j) ̸= ∅ implies that

i = j). The set of all assignment profiles is denoted A. A social choice function f selects

an assignment for each choice function profile, that is, f : ΘN → A. Agents are assumed to

know their own choice function, but not that of others. A game form is an (finite) extensive-

form game with agents as players, assignments as outcomes, and preferences/choice functions

left unspecified.

Under the standard approach, one would introduce at this point a domain of prefer-

ences over X∗, and observe that appending a preference profile to the game form defines an

extensive-form game. The novelty of our approach lies in the recognition that agents may fail

to be rational, either because of individual behavioral biases or because of challenges when

aggregating diverging opinions. As illustrated in the past two sections, it is not sufficient

to define choices for menus of deterministic outcomes, because non-degenerate beliefs about

others’ actions in the game form generate lotteries over X∗ (even though the game form

determines deterministic assignments), and STP violations imply that choices over resulting

menus of lotteries cannot be inferred from choices over menus of deterministic outcomes

associated to degenerate beliefs. Instead, we must define, for each agent, a choice function c

defined over ∆(X∗). As before, we assume that c selects from each nonempty menu S ⊆ X∗

a single element c(S) ∈ S.19 Let Θ represent the set of all such choice functions: cθ is distinct

from cθ′ , for each θ ̸= θ′, and for each choice function c there is θ ∈ Θ such that cθ = c.

A choice function profile specifies a choice function for each agent. The set of all choice

17By contrast, studying quasi-linear problems, or exchange with divisible goods, would require to first
start with non-rational individual choice functions on those domains. The paper focuses on discrete-choice
problems instead because they are more often the focus of the literature on behavioral choice theory.

18Agents could be individuals or groups of people (e.g. family), depending on context.
19Similarly, preferences are most often assumed to be strict when analyzing unit-demand assignment

problems in the rational benchmark.
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function profiles is thus ΘN . Appending a choice function profile θ to a game form defines a

behavioral extensive-form game.

Notice that outcomes in this applications are assignments (n-vectors with components

in X∗), and agents care only about their assigned item, which is why choice functions are

naturally defined over subsets of X∗ instead of subsets of A. To reflect this, we denote by

oi(σ
I
i , s−i) the element of X∗ assigned to i conditional on having reached I, when she follows

sIi while others follow s−i ∈ SI
−i. Given a belief µI

i ∈ ∆(SI
−i), playing sIi gives rise to the

lottery ℓIi (s
I
i , µ

I
i ) over ∆(X∗) where, for each x ∈ X∗, i gets x with probability∑

s−i∈SI
−i|oi(sIi ,s−i)=x

µI
i (s−i).

Thus agent i’s opportunity set of lotteries when varying her own strategy at I, and given her

belief µI
i , is viewed as a subset of ∆(X∗) instead of a subset of lotteries over assignments:

OI
i (µ

I
i ) = {ℓIi (sIi , µI

i )|sIi ∈ SI
i }.

All other definitions (in particular that of a dominant strategy) and observations from Section

3.2 now carry through unchanged.

A game form implements the social choice function f in dominant strategies if there are

functions (s∗i : Θ → Si)i∈N such that, for each (θi)i∈N ∈ ΘN , s∗i (θi) is dominant for each i

in the resulting extensive-form game, and f(θ1, . . . , θ|N |) coincides with the assignment that

arises when players follow these strategies.

The main result of this section is a characterization of social choice functions that are

implementable this way. As a start, we add a property, non-bossiness, that often appears in

similar results for the rational domain. We extend the characterization to all implementable

social choice functions further below. The social choice function f is non-bossy if the following

holds: fj(θi, θ−i) ̸= fj(θ
′
i, θ−i) implies fi(θi, θ−i) ̸= fi(θ

′
i, θ−i), that is, a change in i’s choice

function impacts the assignment of another agent only if it also impacts i’s assignment.

Let a generalized serial dictatorship be a tree T with an agent i(n) and a finite set A(n)

of actions associated to each non-terminal node n, an assignment associated to each terminal

node, and the following conditions:

(I) Each agent appears at most once along each path from the root to a terminal node;

(II) For each non-terminal node n, A(n) ⊆ X∗ and contains at least two elements.

(III) One cannot find an action a(n′) ∈ A(n) \ {∅} on the path to n.

16



(IV) If action a(n) appears on the path to a terminal node n′, then i(n) gets a(n) at n′.

Classic serial dictatorship has each agent pick in turn according to a prespecified priority

list from the entire set of items that haven’t been selected by higher-priority agents. Sim-

ilarly, agents in the above trees get to sequentially select at most once (by condition (I))

an element from a subset of X∗ (the agent’s choice determines her assignment by condition

(IV)). Condition (III) ensures there is no path where a same item would be picked twice.

But, contrary to serial dictatorship, an agent’s turn and her opportunity set can vary with

past agents’ choices. Each such tree defines a social choice function, where the assignment at

(θ1, . . . , θ|n|) is simply the assignment at the terminal node reached when applying the choice

functions cθ1 , . . . , cθ|N| in the tree. Social choice functions of this type are called generalized

serial-dictatorship rules.

Proposition 2. A non-bossy social choice function is implementable in dominant strategies

if, and only if, it is a generalized serial-dictatorship rule.

Pápai (2000) and Pycia and Ünver (2017) provide a characterization of non-bossy and

Pareto efficient social choice functions that are dominant-strategy implementable over the

rational domain. Proposition 2 characterizes social choice functions that are dominant-

strategy implementable over the unrestricted domain of all choice functions. We make a few

comments as we compare these results.

Enlarging the domain of permissible behaviors makes implementation harder. First,

agents have more deviations. Second, as argued in the previous section, the very existence

of a dominant strategy becomes in some sense harder for given irrational choice-function

profiles given that dominance against pure strategies (which underlies the very definition of

strategyproofness) does not guarantee dominance against all beliefs in the absence of STP. We

see that some rules identified by Pápai (2000) and Pycia and Ünver (2017), those involving

non-trivial top-trading cycles, do not survive the stronger implementability requirement. But

we also see, quite remarkably, that a substantial number of rules among those they identified

are most robust in terms of their implementability. These rules are also particularly simple:

agents sequentially make choices in opportunity sets instead of having to report complex

messages (e.g., about what they would choose in different putative menus).

The Necessity of Dynamic Mechanisms A dynamic mechanism and its associated

strategic form are viewed as equivalent when it comes to dominant-strategy implementation

over the rational domain. By contrast, using dynamic mechanisms can be preferable over

larger domains. Lessons from the previous section provide some intuition. Lesson 1 taught

us that dominance is much more demanding than dominance against pure strategies in static
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games. But Lesson 2 brought some hope: dominance in a dynamic game can be easier than

dominance in the associated strategic form by reducing the uncertainty agents face when

making decisions. As should be clear by now, generalized serial dictatorships fully leverage

this feature. The next result shows that most generalized serial dictatorship rule cannot be

dominant-strategy implementable via a static mechanism (not the strategic-form associated

to the dynamic game implementing it, nor any other static game). In fact, it provides a

characterization of non-bossy social choice functions implementable this way.

Proposition 3. A generalized serial dictatorship rule f is dominant-strategy implementable

via a static mechanism if, and only if, A(n) = A(n′) for any two nodes n and n′ such that

i(n) = i(n′) (in the tree underlying the definition of f).

Efficiency Contrary to typical results on the rational domain, our characterization does

not rely on any form of efficiency. This is convenient since efficiency in the absence of pref-

erences remains a much-debated topic. But this also raises interesting questions: which

generalized serial-dictatorship rules are Pareto efficient on the rational domain, and what

efficiency property (if any) do they entail on selected options for non-rational choice func-

tions? An assignment α is (strongly) Pareto efficient for a rational choice-function profile if

there does not exist another assignment α′ such that all i for which α′
i ̸= αi strictly prefer

α′
i over αi.

Proposition 4. A generalized serial-dictatorship rule f is Pareto efficient on the rational

domain if, and only if, the following properties hold in the tree underlying f :

(i) The action set at the root is X∗;

(ii) If the path until a non-terminal node n contains at most |N | − 2 actions and action

a(n) = ∅ is pursued, then the resulting node is also non-terminal and has the same

action set (A(n));

(ii) If the path until a non-terminal node n contains at most |N | − 2 actions, with at most

|X| − 2 of them different from ∅, and action a(n) ̸= ∅ is pursued, then the resulting

node is also non-terminal and has the action set A(n) \ {a(n)}.

Efficiency thus bring us closer to classic serial dictatorship, though some more flexibil-

ity remains: who chooses at a node may depend on others’ past choices instead of being

predetermined via some priority ranking.20 A couple of corollaries follow. First, combin-

20Pápai (2000) introduces such methods under the name of sequential dictatorship as examples of hierar-
chical exchange rules.
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ing this proposition with the previous one, we conclude that no efficient generalized serial-

dictatorship rule can be dominant-strategy implemented via a static mechanism. This illus-

trates once again the value of dynamic mechanisms beyond the rational domain. Second,

we infer that Pareto efficiency over the rational domain guarantees efficiency à la Sugden

(2004), Bernheim and Rangel (2009) and de Clippel (2014) over the unrestricted domain

when it comes to generalized serial-dictatorship rules.21

Dropping Non-Bossiness Steps 1 and 2 in the proof of Proposition 2 characterize the set

of social choice functions that are dominant-strategy implementable. Dropping non-bossiness

allows one to consider more general trees. In a nutshell, an agent who selects an element

in a subset of X∗ may now have multiple actions associated to a same outcome for her.

These otherwise redundant actions can impact the order of play for the remaining agents, as

well as their opportunity sets. Similarly, an agent who had no say on her assignment in the

generalized serial dictatorship could now have multiple actions that, though not impacting

her lot, would once again impact the order of play for the remaining agents as well as their

opportunity sets. For instance, the first mover might receive x for all choice function profiles,

but her action choice determines the order of play among remaining agents over X \ {x}.
The precise definition is available right after the proof of Step 2. While one may value the

added flexibility, one issue with these additional mechanisms is that they’ll have at least

one agent with multiple dominant strategies. Thus, dropping non-bossiness does allow to

implement additional social choice functions (though not tremendously more), but at the

cost of relying on a dominant-strategy selection process that may seem rather ad-hoc. In

the example just mentioned, one could require for instance ther first mover to pick a first

order of other agents if her type is θ and another order if her type is θ′, but she has no strict

reason to comply.
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Appendix

Proof of Proposition 1

Proof. If c is not rational, then there exist a choice problem T ⊆ O and x ∈ T distinct from

c(T ) such that c(T ) ̸= c(T \ {x}). Let Ω′ be a nonempty strict subset of Ω, and consider the

following acts:

ω ∈ Ω′ ω ∈ Ω \ Ω′

a c(T ) c(T \ {x})
a′ c(T \ {c(T )}) c(T \ {x})
a′′ c(T \ {x}) c(T )

a′′′ x c(T )

ay y y

for each y ∈ T \ {x, c(T ), c(T \ {x})} (if any). Let A be the set of all acts appearing on

the table. Then A(ω) = T for each ω ∈ Ω′, and A(ω) = T \ {x} for each ω ∈ Ω \ Ω′. Let

p ∈ ∆++(Ω) be such that p(Ω) = p(Ω \ Ω′) = 1/2. By STP, c(Lp(A)) = {ℓp(a)} = {1
2
c(T )⊕

1
2
c(T \{x})}. Let Â = A\{a}. Then22 Â(ω) = T \{c(T )} for each ω ∈ Ω′, and Â(ω) = T \{x}

for each ω ∈ Ω \ Ω′. By STP, c(Lp(Â)) = {ℓp(a′)} = {1
2
c(T \ {c(T )}) ⊕ 1

2
c(T \ {x})}. A

contradiction arises then from the fact that Lp(A) = Lp(Â) and c(T ) ̸= c(T \ {c(T )}).

Proof of Proposition 2 The fact that generalized serial-dictatorship rules are imple-

mentable in dominant strategies is straightforward (simply by using the tree defining it

as a game form to implement it). We proceed in two steps to prove necessity. Let f be a

social choice function that is implementable in dominant strategies.

Step 1 f is implementable in dominant strategies by a perfect-information game form G
where agents play at most once along each path.

Proof. Say that agent i plays for the first time at her information set I if she does not have

another information set I ′ such that I succeeds I ′.23 Now modify the game form as follows.

Each information set I at which an agent i plays for the first time in the original game form

now becomes a singleton information set where she chooses an action in SI
i , her entire set

of strategies starting at I. All other information sets disappear. Transitions between new

nodes, as well as final outcomes, are determined by implementing the new action choices as

strategies in the original game form. Thus agents now pick strategies once and for all each

22The fact that c(T \ {x}) ̸= c(T ) is important here.
23Of course, there can be multiple information sets at which an agent plays for the first time when i is

not the first mover in the game as a whole. But, by perfect recall, the collections of information sets that
succeed two such information sets are disjoint.
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time they play for the first time, which may include specifying action choices at subsequent

information sets of the original game form, and those strategies are observed by everyone.

To check that transitions are well defined, consider an agent i at a node ν of the new

game form. By definition, this node corresponds to an information set I at which i plays for

the first time in the original game form. When implementing i’s chosen strategy and other

players’ strategies that led to ν, the original game form reaches either a terminal node, or a

new information set I ′. Notice that I ′ cannot belong to i because her strategy at I specifies

what to play at I ′, which succeeds I. For the same reason, I ′ cannot belong to any agent

that played before i on the path that led to ν in the new game form. This means that I ′

belongs to some agent j who plays there for the first time, which indeed corresponds to a

new node in the new game. Thus transitions between nodes are indeed well defined, and

agents play at most once along each path.

Consider now a choice function profile (θi)i∈N ∈ ΘN , and let (si)i∈N be the dominant

strategy profile in the behavioral extensive-form game associated to the original game form.

Implementing those strategies leads to a terminal node whose outcome is f(θ1, . . . , θ|N |).

These strategies translate naturally in the new game form: player i at a node ν correspond-

ing to the information set I in the original game now picks the restriction of si to I and

subsequent information sets, denoted sIi . By construction, this strategy profile in the new

game also leads to the final assignment f(θ1, . . . , θ|N |).

It remains to check that these are dominant strategies in the modified game. Consider

a node ν at which agent i picks an action in the new game form. We must check that24

cθi(Ôν
i (µ̂

ν
i )) = {ℓ̂νi (ŝνi , µ̂ν

i )}, for all probability distribution over the set of strategy profiles for

others that are consistent with ν. Fixing notations, say ν corresponds to an information set I
in the original game form. By definition, ŝνi = sIi . Notice that any strategy profile for others

in the new game that is consistent with ν corresponds to a strategy profile for others in the

original game that is consistent with I (the original game form can only accommodate more

strategy profiles for others, as player i may be uncertain about what past movers will pick

in the future if they happen to play again). Hence µ̂ν
i admits a natural translation µI

i in the

original game form. We now have that ℓ̂νi (ŝ
ν
i , µ̂

ν
i ) = ℓIi (s

I
i , µ

I
i ), and Ôν

i (µ̂
ν
i ) = OI

i (µ
I
i ). Given

that cθ(OI
i (µ

I
i )) = {ℓIi (sIi , µI

i )}, it must be that cθi(Ôν
i (µ̂

ν
i )) = {ℓ̂νi (ŝνi , µ̂ν

i )}, as desired.

Step 2 Fix an information set I of G at which some agent i makes a move.25 Then either

i’s choice at that node fully pins down her assigned element from X∗ in the subgame, or i’s

choice at that node has no impact on the element she gets from X∗ in the subgame.

24Hats are used to denote variables associated to the new game form.
25I is a singleton since information is perfect in G.
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Proof. The result is proved by contradiction. Suppose to the contrary that there exist

si, s
′
i, s

′′
i ∈ SI

i , and s−i, s
′
−i, s

′′
−i ∈ SI

−i such that (a) oi(si, s−i) ̸= oi(s
′
i, s−i) (i may impact her

assigned element from X∗ in the subgame) and (b) oi(s
′′
i , s

′
−i) ̸= oi(s

′′
i , s

′′
−i) (i’s choice does

not fully pin down her assigned element from X∗ in the subgame).

We first prove this implies there exist ti, t
′
i ∈ SI

i and t−i, t
′
−i ∈ SI

−i such that (a’)

oi(ti, t−i) ̸= oi(t
′
i, t−i) and (b’) oi(ti, t−i) ̸= oi(ti, t

′
−i). If there exists r−i ∈ SI

−i such that

oi(si, s−i) ̸= oi(si, r−i), then (a’) and (b’) hold with ti = si, t′i = s′i, t−i = s−i and

t′−i = r−i. If there exists r−i ∈ SI
−i such that oi(s

′
i, s−i) ̸= oi(s

′
i, r−i), then (a’) and (b’)

hold with ti = s′i, t′i = si, t−i = s−i and t′−i = r−i. For the remaining cases we have

that oi(si, s
′′
−i) = oi(si, s−i) ̸= oi(s

′
i, s−i) = oi(s

′
i, s

′′
−i). Hence oi(s

′′
i , s

′′
−i) cannot equal both

oi(si, s
′′
−i) and oi(s

′
i, s

′′
−i). Say that oi(s

′′
i , s

′′
−i) ̸= oi(si, s

′′
−i) (a similar reasoning applies in the

other case). Now (a’) and (b’) are satisfied with ti = s′′i , t
′
i = si, t−i = s′′−i and t′−i = s′−i.

Next, we show that, if two distinct strategy profiles r−i, r
′
−i ∈ SI

−i are such that OI
i (r−i) =

OI
i (r

′
−i), then i’s assigned element fromX∗ does not depend on whether others play r−i or r

′
−i.

Note that, for each x ∈ OI
i (r−i), there exists ri ∈ SI

i such that oi(ri, r−i) = oi(ri, r
′
−i) = x.

Otherwise, i would select different strategies whether her belief is r−i or r
′
−i when her choice

function selects x from OI
i (r−i), and the game would fail to have a dominant strategy.

Furthermore, there cannot be ri ∈ SI
i such that oi(ri, r−i) ̸= oi(ri, r

′
−i). Otherwise, the game

would fail to have a dominant strategy for i at I given any choice function that selects the

lottery 1
2
oi(si, r−i) ⊕ 1

2
oi(si, r

′
−i) from OI

i (
1
2
r−i ⊕ 1

2
r′−i). Indeed, a dominant strategy would

have to give i the same element from X∗ in r−i and r′−i (since OI
i (r−i) = OI

i (r
′
−i)), when

using deterministic beliefs, and give a lottery with distinct elements from X∗, when using

the belief 1
2
r−i ⊕ 1

2
r′−i.

From the previous paragraph, we conclude that the ti, t
′
i ∈ SI

i and t−i, t
′
−i ∈ SI

−i identified

earlier, namely which satisfy (a’) and (b’), must be such that OI
i (t−i) ̸= OI

i (t
′
−i). Consider

now a choice function for i that selects oi(ti, t−i) from OI
i (t−i) and oi(ti, t

′
−i) from OI

i (t
′
−i)

(which is possible because OI
i (t−i) ̸= OI

i (t
′
−i)). Assume furthermore that her choice function

selects the lottery 3
4
oi(t

′
i, t−i) ⊕ 1

4
oi(t

′
i, t

′
−i) from OI

i (
3
4
t−i ⊕ 1

4
t′−i) (which is possible because

the latter set is distinct from both OI
i (t−i) and OI

i (t
′
−i) given (b’)). In that case, a dominant

strategy for i at I gives oi(ti, t−i) when her belief is t−i, oi(ti, t
′
−i) when her belief is t′−i, and

3
4
oi(t

′
i, t−i) ⊕ 1

4
oi(t

′
i, t

′
−i) when her belief is 3

4
t−i ⊕ 1

4
t′−i. But no strategy can do this given

(a’).

Steps 1 and 2 reveal that f is dominant-strategy implementable using a tree with an agent

i(n) and a finite set A(n) of actions associated to each non-terminal node n, an assignment

associated to each terminal node, and the following properties:
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(I) For each n, there is a map g|N | from A(n) to X∗. Let Im(g|N |) denote the image of

A(n);

(II) Each agent appears at most once along each path from the root to a terminal node;

(III) One cannot find an action a(m) on the path to n such that gm(a(m)) ∈ Im(g|N |)\{∅};

(IV) If action a(n) appears on the path to a terminal node n′, then i(n) gets g|N |(a(n)) at

n′.

Dominant strategies are easily determined in these trees, for all choice-function profiles:

a strategy for agent i is dominant given θi if, and only if, the action a(n) selected at each

node n such that i(n) = i is such that cθi(Im(g|N |)) = g|N |(a(n)).
26

Step 3 If f is, in addition, non-bossy, then f is a generalized serial-dictatorship rule.

Proof. Fix one of the above game form to implement f in dominant strategies. Let (s∗i :

Θ → Si)i∈N be a profile of dominant strategies implementing f . Let n be a node in the tree

such that (i) A(n) is strictly larger than Im(g|N |), and (ii) there is no subsequent node m

such that A(m) is strictly larger than Im(gm). We now show that f is dominant strategy

implementable in a modified game form where the only change occurs is that each element of

X∗ selectable at n is now associated to a unique action. The result then follows by repeatedly

adjusting the game form this way (a backward-induction argument).

To do this, we trim twice the action set at n. First, we eliminate any action a(n) that

is never played at n, that is, for which one cannot find θi(n) such that s∗i(n)(θi(n)) = a(n).

Let A′(n) ⊆ A(n) be the set of surviving actions. Notice that g|N |(A
′(n)) = g|N |(A(n)).

Otherwise, for x ∈ g|N |(A(n)) \ g|N |(A
′(n)), i(n) would select an action in A(n) \ A′(n),

contradicting the definition of eliminated actions, when her choice function is rational and

ranks x at the top

Next, for each x ∈ Im(g|N |), fix an element a∗x ∈ A′(n) such that g|N |(a
∗
x) = x, and

consider the modified set A∗(n) = {a∗x|x ∈ Im(g|N |)} ⊆ A′(n) ⊆ A(n). The function

g|N | remains unchanged (though now defined over a smaller domain), and the new tree

is obtained simply by trimming subgames associated to actions in A(n) \ A∗(n). Clearly,

g|N |(A
∗(n)) = g|N |(A

′(n)), and hence g|N |(A
∗(n)) = g|N |(A(n)). Dominant strategies are

modified by selecting a∗x whenever i(n) picked a(n) in the original game such that g|N |(a(n)) =

x.

Modified strategies are clearly dominant since opportunity sets, as subsets of X∗, remain

unchanged at all nodes surviving the trimming. It remains to show that they continue

26This provides a characterization of social choice functions that are dominant-strategy implementable
(without non-bossiness).
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to implement f . For this, fix a choice function profile (θi)i∈N . Let x = g|N |(s
∗
i (θi(n))) =

fi(θ1, . . . , θ|N |) be the element of X∗ that i(n) selects in the original game form, and hence

receives under f , when of type θi(n). By definition of A∗, there exists θ′i(n) such that s∗i (θ
′
i(n)) =

a∗x. Hence the final assignment when playing the new dominant strategies at (θi)i∈N in the

modified game gives rise to the same assignment as when playing the original dominant

strategies at (θ′i(n), θ−i(n)) in the original game, or f(θ′i(n), θ−i(n)). But fi(θ
′
i(n), θ−i(n)) =

fi(θi(n), θ−i(n)) = x, since g|N |(a
∗
x) = x, and hence fi(θ

′
i(n), θ−i(n)) = fi(θi(n), θ−i(n)), since f is

non-bossy. Thus the modified game form, along with the modified strategies, also implement

f in dominant strategies, as desired.

Proof of Proposition 3

Proof. (Sufficiency) For each j ∈ N , let Aj be the set of actions available at all n such that

i(n) = j. Consider then the static mechanism where agents select, independently of each

others, an element of their action set, and the outcome associated to a strategy profile is the

outcome obtained by implementing those strategies in the underlying tree (a simplification

of the associated strategic form). Clearly, selecting cθj(Aj) is dominant for each player j of

type θj, and this static mechanism implements f in dominant strategies.

(Necessity) We prove the contraposition. Suppose i is in charge at n and n′ such that

a ∈ A(n) \A(n′) (a similar argument applies if one can only find an action in A(n′) \A(n)).
Suppose also that A(n′) contains a′ and a′′ (action sets contain at least two elements by

condition (II) in the definition of the tree underlying the definition of f). For any path in

the tree, we can construct a choice-function profile generating this path. Indeed, each action

corresponds to an element of X∗ that the agent in charge can select, and the unrestricted

domain contains a choice function that would pick that element from the opportunity set

arising when varying those actions. Fix now θi such that i picks a from A(n) and a′ from

A(n′), θ′i such that i picks a from A(n) and a′′ from A(n′), θ−i such that n is reached, and

θ′−i such that n′ is reached.

Suppose, for an argument by contradiction, that f is dominant-strategy implementable

via a static mechanism. Let Mj be the set of strategies available to each player j, and let

(mj : Θ → Mj)j∈N be a profile of dominant strategies implementing f . If agent i picks

the message mi(θi) in the static mechanism, then she gets a (resp., a′) if j picks mj(θj)

(resp., mj(θ
′
j)) for each j ̸= i. If agent i picks the message mi(θ

′
i) in the static mechanism,

then she gets a (resp., a′′) if j picks mj(θj) (resp., mj(θ
′
j)) for each j ̸= i. Now suppose

that agent i has a choice function θ′′i that selects a from A(n), a′ from A(n′), and 1
2
a⊕ 1

2
a′′

from {1
2
gi(wi, (mj(θj))j ̸=i)⊕ 1

2
gi(wi, (mj(θ

′
j))j ̸=i)|wi ∈ Mi}, where g is the outcome function

in the static mechanism implementing f (the selected lottery does indeed belong on that
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set, simply taking wi = mi(θ
′
i)). The dominant strategy mi(θ

′′
i ) would have to be such

that gi(mi(θ
′′
i ), (mj(θj))j ̸=i) = a (dominance for i’s belief that other agents play according

to (mj(θj))j ̸=i), gi(mi(θ
′′
i ), (mj(θ

′
j))j ̸=i) = a′ (dominance for i’s belief that other agents play

according to (mj(θ
′
j))j ̸=i), and

1
2
gi(mi(θ

′′
i ), (mj(θj))j ̸=i)⊕ 1

2
gi(mi(θ

′′
i ),mj(θ

′
j))j ̸=i) =

1
2
a⊕ 1

2
a′′

(dominance for i’s belief that other agents play according to (1
2
mj(θj)⊕ 1

2
mj(θ

′
j))j ̸=i). This is

impossible given that a′ ̸= a′′, which contradicts the fact that the static mechanism admits

a dominant strategy.

Proof of Proposition 4

Proof. (Necessity) Suppose n∗ is the root of the tree, but that there exists y ∈ X∗ \ A(n∗).

Consider then a rational choice-function profile where all agents other that i(n∗) rank ∅ at

the top, while agent i(n∗) ranks y at the top. Pareto efficiency implies that agents other

than i(n∗) get ∅, while implementability implies that i(n∗) gets her top choice in A(n∗). But

this is Pareto dominated by the assignment that give y to i(n∗) (and ∅ to all other agents).

This establishes (i).

We now prove (ii) and (iii) by induction on the length of the path at n. Suppose thus

that (i), (ii) and (iii) hold at all previous nodes along the path that led to n, in addition to

the fact that the path until n contains at most |N | − 2 actions. Suppose first that a(n) = ∅
is pursued, but that the action set at the resulting node n′ is different from A(n). By the

induction hypothesis, it means that A(n′) is a strict subset of A(n) (since a chosen item

is eliminated forever after along each path of the tree). Say y ∈ A(n) \ A(n′). Consider

then a rational choice-function profile where i(n′) ranks y at the top, all her predecessors

top rank the action they follow on that path, and all remaining agents rank ∅ at the top.

Implementability implies that i(n′) gets her top choice in A(n′) and her predecessors get the

action followed on the path until n′. Pareto efficiency implies that all remaining agents get

∅. But this is Pareto dominated by modifying the assignment to give y to i(n′) instead. This

establishes (ii). A very similar argument applies to establish (iii).

(Sufficiency) Suppose the tree underlying the definition of f satisfies conditions (i) to (iii),

but that f selects a Pareto inefficient assignment at some rational choice-function profile

(θi)i∈N . Let α be a Pareto improving assignment, and let n be the first node at which αi(n)

is different from the action chosen at i(n) when following the tree to implement f at (θi)i∈N .

By properties (i) to (iii), αi(n) ∈ A(n), since A(n) is obtained by eliminating options other

than αi(n) (the assignment α cannot assign αi(n) to both i(n) and one of her predecessors)

from X∗. But having i(n) chooses fi(n)(θ1, . . . , θ|N |) from A(n) contradicts the fact that i(n)

strictly prefers αi(n) over fi(n)(θ1, . . . , θ|N |).
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